Send to

Choose Destination
Eur J Neurosci. 1998 Oct;10(10):3171-93.

A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A.

Author information

Wellcome Laboratory of Neurobiology, University College, London, UK.


This report addresses the connectivity of the cortex occupying middle to dorsal levels of the anterior bank of the parieto-occipital sulcus in the macaque monkey. We have previously referred to this territory, whose perimeter is roughly circumscribed by the distribution of interhemispheric callosal fibres, as area V6, or the 'V6 complex'. Following injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA-HRP) into this region, we examined the laminar organization of labelled cells and axonal terminals to attain indications of relative hierarchical status among the network of connected areas. A notable transition in the laminar patterns of the local, intrinsic connections prompted a sub-designation of the V6 complex itself into two separate areas, V6 and V6A, with area V6A lying dorsal, or dorsomedial to V6 proper. V6 receives ascending input from V2 and V3, ranks equal to V3A and V5, and provides an ascending input to V6A at the level above. V6A is not connected to area V2 and in general is less heavily linked to the earliest visual areas; in other respects, the two parts of the V6 complex share similar spheres of connectivity. These include regions of peripheral representation in prestriate areas V3, V3A and V5, parietal visual areas V5A/MST and 7a, other regions of visuo-somatosensory association cortex within the intraparietal sulcus and on the medial surface of the hemisphere, and the premotor cortex. Subcortical connections include the medial and lateral pulvinar, caudate nucleus, claustrum, middle and deep layers of the superior colliculus and pontine nuclei. From this pattern of connections, it is clear that the V6 complex is heavily engaged in sensory-motor integration. The specific somatotopic locations within sensorimotor cortex that receive this input suggest a role in controlling the trunk and limbs, and outward reaching arm movements. There is a secondary contribution to the brain's complex oculomotor circuitry. That the medial region of the cortex is devoted to tightly interconnected representations of the sensory periphery, both visual and somatotopic-which are routinely stimulated in concert-would appear to be an aspect of the global organization of the cortex which must facilitate multimodal integration.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center