Format

Send to

Choose Destination
Arch Biochem Biophys. 1998 Oct 15;358(2):232-42.

Cellular responses to nitric oxide: role of protein S-thiolation/dethiolation.

Author information

1
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA. cmp2@acpub.duke.edu

Abstract

Nitrosothiols, the product of the reaction of nitric oxide-derived species (NOx) with thiols, participate in both cell signaling and cytotoxic events. Glutathione has recently been shown to modulate nitrosothiol-mediated signal transduction and to protect against NOx-mediated cytotoxicity. We have investigated the role of protein S-thiolation/dethiolation as a potential mechanism by which glutathione regulates nitrosothiol signaling and toxicity. Our data show that exogenous sources of NOx decreased both free protein thiol and total glutathione levels in endothelial cells. The decrease in glutathione levels could not be accounted for by formation of S-nitrosoglutathione (GSNO) since borohydride treatment of the nonprotein fraction of cell extracts did not restore glutathione levels, whereas borohydride treatment of protein-containing cell extracts led to recovery of glutathione levels. The NOx-mediated decrease in glutathione and protein thiol content was correlated with an increase in protein mixed disulfide formation, as measured by the incorporation of [35S]glutathione into cellular proteins. [35S]glutathione was incorporated into proteins via a covalent disulfide bond since dithiothreitol removed the radiolabel from cellular proteins. The withdrawal of the exogenous NOx source led to recovery of free protein thiol and cellular glutathione levels, which correlated with the dethiolation of proteins. Dethiolation required the action of the glutathione redox system since 1, 3-bis(2-chloroethyl)-1-nitrosourea, an inhibitor of glutathione reductase, blocked both the recovery of glutathione levels and the dethiolation of proteins. These results suggest that exposure of cells to NOx does not lead to accumulation of GSNO but rather stimulates protein S-thiolation, a mechanism which may have important implications with respect to nitrosothiol signaling and toxicity.

PMID:
9784235
DOI:
10.1006/abbi.1998.0859
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center