Format

Send to

Choose Destination
See comment in PubMed Commons below
Acta Physiol Scand. 1998 Sep;164(1):71-8.

Regional differences in the effect of exercise intensity on thermoregulatory sweating and cutaneous vasodilation.

Author information

1
Laboratory for Applied Human Physiology, Faculty of Human Development, Kobe University, Japan.

Abstract

To investigate regional body differences in the effect of exercise intensity on the thermoregulatory sweating response, nine healthy male subjects (23.2 +/- 0.4 year) cycled at 35, 50 and 65% of their maximal O2 uptake (VO2max) for 30 min at an ambient temperature of 28.3 +/- 0.2 degrees C and a relative humidity of 42.6 +/- 2.4%. Local sweating rate (msw) on the forehead, chest, back, forearm and thigh increased significantly with increases in the exercise intensity from 35 to 50% VO2max and from 50 to 65% VO2max (P < 0.05). The mean values for the density of activated sweat glands (ASG) at 50 and 65% VO2max at the five sites were significantly greater than at 35% VO2max. The mean value of the sweat output per gland (SGO) also increased significantly with the increase in exercise intensity (P < 0.05). The patterns of changes in ASG and SGO with an increase in exercise intensity differed from one region of the body to another. Although esophageal temperature (Tes) threshold for the onset of sweating at each site was not altered by exercise intensity, the sensitivity of the sweating response on the forehead increased significantly from 35 to 50 and 65% VO2max (P < 0.05). The threshold for cutaneous vasodilation tend to increase with exercise intensity, although the exercise intensity did not affect the sensitivity (the slope in the relationship Tes vs. percentage of the maximal skin blood flow) at each site. Tes threshold for cutaneous vasodilation on the forearm was significantly higher at 65% VO2max than at either 35 or 50% VO2max, but this was not observed at the other sites, such as on the forehead and chest. These results suggest that the increase in msw seen with an increasing intensity of exercise depends first on ASG, and then on SGO, and the dependence of ASG and SGO on the increase in msw differs for different body sites. In addition, there are regional differences in the Tes threshold for vasodilation in response to an increase in exercise intensity.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center