Send to

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 1998 Oct 15;56(8):977-85.

Polyamine modulation of mitochondrial calcium transport. I. Stimulatory and inhibitory effects of aliphatic polyamines, aminoglucosides and other polyamine analogues on mitochondrial calcium uptake.

Author information

Institute of Pharmacology and Toxicology, University of Göttingen, Germany.


In this study, the regulation of mitochondrial Ca2+ transport by polyamines structurally related to spermine and by analogous polycationic compounds was characterized. Similar to spermine, a number of amino groups containing cationic compounds exerted a dual effect on Ca2+ transport of isolated rat liver mitochondria: a decrease in Ca2+ uptake velocity and an enhancement of Ca2+ accumulation. In contrast to the effects of spermine and other aliphatic polyamines, however, the accumulation-enhancing effect of aminoglucosides, basic polypeptides, and metal-amine complexes turned into an inhibition of Ca2+ accumulation at higher concentrations. Within groups of structurally related compounds, the potency to decrease Ca2+ uptake velocity and to enhance Ca2+ accumulation correlated with the number of cationic charges. The presence of multiple, distributed cationic charges was a necessary, but not sufficient criterion for effects on mitochondrial Ca2+ transport, because cationic polyamines and basic oligopeptides which did not enhance mitochondrial Ca2+ accumulation could be identified. Spermine was not able to antagonize the blocking of Ca2+ uptake by ruthenium red, but rather showed an apparent synergism, which can be explained as a displacement of membrane-bound Ca2+ by spermine. The aminoglucosides, gentamicin and neomycin, but not the inactive polyamine bis(hexamethylene)-triamine, inhibited the binding of spermine to intact mitochondria. Apparently, the binding of spermine, gentamicin, and a number of polyamine analogues to low-affinity binding sites at mitochondria, which have low, but distinct structural requirements and which may correspond to phospholipid headgroups, indirectly influences the activity state of the mitochondrial Ca2+ uniporter. The ability of aminoglucosides to displace spermine from the mitochondria and to inhibit mitochondrial Ca2+ accumulation may contribute to the mitochondrial lesions, which are known to occur early in the course of aminoglucoside-induced nephrotoxicity.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center