Format

Send to

Choose Destination
See comment in PubMed Commons below
Methods. 1998 Sep;16(1):3-20.

Analysis of protein and DNA-mediated contributions to cooperative assembly of protein-DNA complexes.

Author information

1
Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, California, 92697, USA. dfsenear.uci.edu

Abstract

The cooperative assembly of protein-DNA complexes is a widespread phenomenon that is of particular significance to transcriptional regulation. Assembly of these complexes is controlled by the chemistry of the macromolecular interactions. In this sense, transcriptional regulation is a chemical issue. The purpose of this review is to present an analytical approach designed to understand this regulation from a chemical perspective. By investigating the solution interactions between all combinations of molecules, protein-protein, protein-ligand, and protein-DNA, and the interplay between them, it is possible to determine the relative free energies of the different configurations of the regulatory complex. This governs their distribution and thereby controls the biological activity. To illustrate the approach, we will address the molecular basis for cooperativity in the bacteriophage lambda, lysogenic-lytic switch mechanism, a system that has long served as a paradigm for gene regulation. The driving force for cooperativity in the assembly of gene regulatory complexes is generally thought to be provided by direct protein-protein interactions. However, other interactions mediated by both proteins and DNA are also involved and may be critical to the regulatory mechanism. We will review advances over the past several years in the application of biophysical chemical methods to investigate protein-protein and protein-DNA interactions. Many of these applications were first employed for the lambda system. In addition to describing the physical basis for the methods, we will focus on the unique information that can be gained and how to combine the information obtained from several techniques to develop a comprehensive view of the critical regulatory interactions.

PMID:
9774512
DOI:
10.1006/meth.1998.0641
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center