Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurophysiol. 1998 Oct;80(4):1713-35.

Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex.

Author information

1
Neurologische Universitätsklinik, Sektion für Visuelle Sensomotorik, 72076 Tübingen, Germany.

Abstract

Electrical microstimulation (0.1-ms bipolar pulses at 500 Hz, current strength usually between 100 and 200 microA) was used to delineate saccade-related areas in the posterior parietal cortex of monkeys. Stimulation-induced saccades were found to be restricted to the lateral intraparietal area (area LIP) in the intraparietal sulcus (IPS) and a region on the medial aspect of the parietal lobe (area MP, medial parietal area), close to the caudal end of the cingulate sulcus, whereas stimulation of area 7a did not evoke eye movements. Two different types of evoked saccades were observed. Modified vector saccades, whose amplitude was modified by the position of the eyes at stimulation onset were the hallmark of sites in area LIP and area MP. The same sites were characterized by a propensity of single units active in the memory and presaccadic response segments of the memory saccade paradigm. Goal-directed saccades driving the eyes toward a circumscribed region relative to the head were largely restricted to a small strip of cortex on the lateral bank and the floor of the IPS (the intercalated zone), separating the representation of upward and downward directed saccades in LIP. Unlike stimulation in LIP or MP, stimulation in the intercalated zone gave rise to head, pinnae, facial, and shoulder movements accompanying the evoked saccades. We propose that the amplitude modification of vector saccades characterizing LIP and MP may reflect a spatially distributed head-centered coding scheme for saccades. On the other hand, the goal-directed saccades found in the intercalated zone could indicate the use of a spatially much more localized representation of desired location in head-centered space.

PMID:
9772234
DOI:
10.1152/jn.1998.80.4.1713
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center