Send to

Choose Destination
Virology. 1998 Oct 10;250(1):9-18.

A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins.

Author information

Institut f√ľr Medizinische Mikrobiologie und Hygiene, Universit√§t Freiburg, Freiburg, D-79008, Germany.


We have previously shown that the nucleoprotein (NP) of Thogoto virus (THOV), a tick-borne member of the Orthomyxoviridae family, accumulates in the cell nucleus. Here we demonstrate that THOV NP contains a motif (KRxxxxxxxxxKTKK) at amino acid positions 179-193 that represents a classical bipartite nuclear localization signal (NLS). This sequence motif (named cNLS) was able to translocate a cytoplasmic 80-kDa reporter protein into the nucleus. Targeted mutations substituting lysines for alanines in the downstream cluster of the bipartite motif abolished the capacity of cNLS to mediate nuclear import. In contrast, identical mutations had no effect on nuclear localization when introduced into THOV NP, indicating that additional transport signals are present in NP. Amino-acid sequence comparisons revealed that THOV NP lacks the N-terminal nonconvential NLS (named here nNLS), which has been implicated in nuclear import of influenza A virus NP. Accordingly, THOV NP failed to interact in coprecipitation assays with the cellular NPI-1/3 transport factors of the karyopherin alpha family. A highly conserved motif identified in THOV NP was the so-called nuclear accumulation sequence (NAS). Mutating NAS alone, or in combination with cNLS, had no gross effect on the intracellular distribution of the protein, indicating that a functional NAS is not required for nuclear accumulation of THOV NP in mammalian cells. We also studied nuclear transport of influenza A/PR/8/34 virus NP. Interestingly, we found a cNLS motif at amino acid positions 198-216 in addition to the previously described nonconventional nNLS. To further assess the functional role of cNLS, nNLS, and NAS, we analyzed single, double, and triple mutants of influenza A virus NP. When nNLS was destroyed, the protein stayed in the cytoplasm as expected. When NAS was disrupted in addition to nNLS, the double mutant accumulated in the nucleus, suggesting that cNLS was active. Indeed, when cNLS was also inactivated, the triple mutant protein localized again predominantly to the cytoplasm. These findings suggest that NP of orthomyxoviruses have two independent NLSs, namely cNLS and nNLS. They further suggest that NAS and NLSs may assume opposing roles in nucleocytoplasmic transport of NP.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center