Format

Send to

Choose Destination
J Mol Spectrosc. 1998 Nov;192(1):169-178.

Double Resonance Sub-Doppler Study of the Allowed and DeltaK = -3 Forbidden Q(3, 3) Transitions to the nu2 Vibrational State of 14NH3.

Author information

1
Unité Mixte de Recherche CNRS/, Université de Lille, Villeneuve d'Ascq, 59655, France

Abstract

The IR-IR sub-Doppler double resonance and standard saturation sideband spectroscopy have been used to measure the allowed and Deltak = -3 forbidden transitions to the nu2 vibrational level of 14NH3. The IR-IR double resonance technique has made it possible to observe quadrupole hyperfine structures which correspond to the sums as well as differences of the -3Q(3, 3) and Q(3, 3) hyperfine components. The "sum" and "difference" double resonance frequencies have been measured with accuracy better than 30 and 5 kHz, respectively. In addition to this, the hyperfine structure of the allowed Q(3, 3) transition has been independently measured using the "standard" saturation sideband spectroscopy with accuracy better than 15 kHz. A simultaneous analysis of all measured data provides an improved set of effective nuclear quadrupole and spin-rotation parameters for the excited nu2 vibrational state and frequencies of the "pure" rotation-vibration transitions deperturbed from the hyperfine effects at the experimental sample pressure of about 3 mTorr, including a very precise zero pressure value of the "forbidden" spacing between energies of the nu2 ||s, J = 3, K = 3> and ||s, J = 3, K = 0> pure rotational levels of 2883.6795(19) MHz [0.096189194(63) cm-1].

PMID:
9770400

Supplemental Content

Loading ...
Support Center