Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1998 Oct 15;18(20):8153-62.

Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: interactions among multiple receptors.

Author information

Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.


We characterized potassium current activated by G-protein-coupled receptors in acutely dissociated hippocampal CA3 neurons. Agonists for serotonin, adenosine, and somatostatin receptors reliably activated a potassium-selective conductance that was inwardly rectifying and that was blocked by 1 mM external Ba2+. The conductance had identical properties to that activated by GABAB receptors in the same cells. In one-half of the CA3 neurons that were tested, the metabotropic glutamate agonist 1S,3R-ACPD also activated inwardly rectifying Ba2+-sensitive potassium current. Activation of the current by serotonin and adenosine agonists occurred with a time constant of 200-700 msec after a lag of 50-100 msec; on removal of agonist the current deactivated with a time constant of 1-2 sec after a lag of 200-400 msec. These kinetics are similar to GABAB-activated current and consistent with a direct action of G-protein on the channels. For somatostatin, both activation and deactivation were approximately fourfold slower, probably limited by agonist binding and unbinding. The half-maximally effective agonist concentrations were approximately 75 nM for somatostatin, approximately 100 nM for serotonin, and approximately 400 nM for 2-chloroadenosine. Dose-response relationships had Hill coefficients of 1.2-1.9, suggesting cooperativity in the receptor-to-channel coupling mechanism. At saturating concentrations of agonists, the combined application of baclofen and either somatostatin, serotonin, or 2-chloroadenosine produced effects that were subadditive and often completely occlusive. However, at subsaturating concentrations the effects of baclofen and 2-chloroadenosine were supra-additive. Thus, low levels of different transmitters can act synergistically in activating inwardly rectifying potassium current.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center