Send to

Choose Destination
Dev Biol. 1998 Oct 1;202(1):85-102.

N-cadherin/catenin-mediated morphoregulation of somite formation.

Author information

Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.


Somitogenesis during early stages in the chick and mouse embryo was examined in relation to N-cadherin-mediated adhesion. Previous studies indicated that N-cadherin localizes to the somite regions during their formation. Those observations were extended to include a spatiotemporal immunohistochemical analyses of beta-catenin and alpha-catenin, as well as a more detailed study of N-cadherin, during segmentation, compaction, and compartmentalization of the somite. N-cadherin and the catenins appear early within the segmental plate and are expressed as small patch-like foci throughout this tissue. The small foci of immunostaining coalesce into larger clusters of N-cadherin/catenin-expressing regions. The clusters subsequently coalesce into a region of centrally localized cells that express N-cadherin/catenins at their apical surfaces. The multiple clusters are spaced wide apart in the anterior segmental plates that form the first 6 somite pairs, as contrasted to segmental plates that form somites 7 and beyond. To examine the functional significance of N-cadherin, segmental plates were exposed to antibodies that perturb N-cadherin-mediated adhesion in the chick embryo. The multiple, anomalous somites that result in these experiments indicate that each N-cadherin/catenin-expressing cluster can give rise to a somitic structure. beta-Catenin involvement in somitogenesis suggests a role for Wnt-mediated signaling. Embryos treated with LiCl also show induction of similar anomalous somites indicating further the possibility that Wnt-mediated signaling may be involved in the clustering event. It is suggested that beta-catenin serves to initiate the adhesion process which is spread then by N-cadherin. Later during compartmentalization, N-cadherin/catenins remain expressed by the myotome compartment. Taken together, these results suggest that the Ca2+-dependent cell adhesion molecule N-cadherin and the intracellular catenins are important in segmentation and formation of the somite and myotome compartment. It is proposed that the N-cadherin-mediated adhesion process may serve as a common, evolutionarily conserved, link in the differentiation pathways of skeletal and cardiac muscle.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center