Format

Send to

Choose Destination
J Biochem. 1998 Oct;124(4):848-56.

Characterization and primary structure of a base non-specific and acid ribonuclease from Dictyostelium discoideum.

Author information

1
Department of Microbiology, College of Pharmacy, Nihon University, Funabashi, Chiba, 274-0063, Japan.

Abstract

A base non-specific and acid RNase was isolated from cellular slime mold (Dictyostelium discoideum) cells in a homogeneous state (about 2.4 kDa) by SDS-polyacrylamide gel electrophoresis. The RNase (RNase DdI) has a pH optimum of 5.0. The amino acid sequence of RNase DdI was determined by a combination of protein chemistry, a search of Data base, Dicty cDB and further sequence analysis of cDNA from the same bank. RNase DdI consists of 198 amino acid residues, and about 13.3, 0.9, 1.2, 3.3, and 1.0 residues of mannose, xylose, glucose, GlcNAc, and GalNAc, respectively. RNase DdI has two characteristic conserved segments of the RNase T2 family, and thus belongs to the RNase T2 family. Considering the fact that most of the RNase activity of D. discoideum is present in the lysosomal fraction [Wiener and Ashworth (1970) Biochem. J. 118, 505-512], it was concluded that the lysosomal RNase in D. discoideum is a member of the RNase T2 family. The amino acid sequence of RNase DdI is highly homologous with that of Physarum polycephalum RNase (RNase Phyb), and its amino acid sequence seems to be similar to those of plant/animal type RNases, rather than fungal RNases. The location of RNase DdI in the phylogenetic tree of the RNase T2 family was estimated.

PMID:
9756633
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
Loading ...
Support Center