Mechanisms and functional significance of a slow inhibitory potential in neurons of the lateral amygdala

Eur J Neurosci. 1998 Mar;10(3):853-67. doi: 10.1046/j.1460-9568.1998.00092.x.

Abstract

A slow inhibitory potential (sIP) elicited upon synaptic activation in spiny, pyramidal-like cells with properties indicative of projection neurons was investigated in slices of the rat and guinea-pig lateral amygdala in vitro. The sIP succeeded the triphasic sequence of excitatory and fast/slow inhibitory postsynaptic potentials mediated via glutamate and GABA(A/B) receptors, respectively, was readily evoked upon repetitive stimulation of the external capsule and appeared to terminate epileptiform burst discharges during pharmacologically reduced GABAergic influence. The sIP reversed close to the Cl- equilibrium potential, but was not affected by altered transmembrane Cl- gradients and not abolished by antagonists to ligand-gated Cl- channels. Intracellular injection of QX 314 and resulting blockade of sodium spikes had no effect, whereas the Ca2+ chelator BAPTA blocked the sIP concomitantly with slow hyperpolarizing afterpotentials following intrinsically generated spike firing, thereby indicating the contribution of Ca2+-dependent mechanisms secondary to synaptic activation. During action of BAPTA and QX 314, an N-methyl-D-aspartate (NMDA) receptor-mediated potential was unmasked, which contributed to the sIP. The Ca2+-dependent mechanisms of the sIP involved a membrane K+ conductance, as was indicated by the dependence on the K+ gradient and the shift of the reversal potential towards the K+ equilibrium potential during blocked NMDA receptors. During the presence of GABA receptor antagonists, reduction of the Ca2+-activated K+ conductance through injection of BAPTA or application of dopamine induced a gradual shift of interictal-like single bursts of spikes towards the generation of re-occurring ictal-like activity. It is concluded that pyramidal-like projection cells in the AL can generate a sIP upon synaptic activation, which reflects the combined activation of an NMDA receptor-mediated cation current and a K+ current that is secondary to the rise in intracellular Ca2+ concentration resulting from the preceding depolarizing response. The sIP may play an important role in controlling excitatory activity in the amygdala, particularly in preventing the transformation of interictal-like activity towards recurrent epileptic discharges during periods of decreased GABAergic influence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amygdala / cytology
  • Amygdala / physiology*
  • Animals
  • Calcium / physiology
  • Chloride Channels / physiology
  • Epilepsy / physiopathology
  • Excitatory Amino Acids / physiology
  • Female
  • Guinea Pigs
  • In Vitro Techniques
  • Male
  • Membrane Potentials / physiology
  • Neurons / physiology*
  • Patch-Clamp Techniques
  • Potassium Channels / physiology
  • Rats
  • Rats, Wistar
  • Receptors, GABA-A / drug effects
  • Receptors, GABA-A / physiology
  • Receptors, GABA-B / drug effects
  • Receptors, GABA-B / physiology
  • Receptors, N-Methyl-D-Aspartate / drug effects
  • Receptors, N-Methyl-D-Aspartate / physiology
  • Synapses / physiology

Substances

  • Chloride Channels
  • Excitatory Amino Acids
  • Potassium Channels
  • Receptors, GABA-A
  • Receptors, GABA-B
  • Receptors, N-Methyl-D-Aspartate
  • Calcium