[Effects of hydroxyl radicals on purified angiotensin I converting enzyme]

Arch Mal Coeur Vaiss. 1998 Aug;91(8):1013-9.
[Article in French]

Abstract

Somatic angiotensin-converting enzyme (ACE) is a protein which contains two similar domains (N and C), each possessing a functional active site. The relationship between ACE, its natural substrates and oxygen free radicals is starting to be explored. On one hand, superoxide anions production is induced by angiotensin II and on the other hand, activated polynuclear neutrophils, through free radicals generation, alter endothelial ACE activity. In this study, we examined the impact of hydroxyl radicals (.OH) on purified ACE. .OH were produced using a generator: 2,2'-azo-bis 2-amidinopropane (GRH) provided by Lara-Spiral (Fr). GRH (3 mM), in a time-dependent fashion, inhibited ACE activity. When ACE was co-incubated for 4 h with GRH, its activity decreased by 70%. Addition of dimethylthiourea (DMTU: 0.03 to 1 mM) or mannitol + methionine (20/10 mM), two sets of .OH scavengers, produced a dose-dependent protection on ACE activity. To examine whether oxidation of thiol groups in the ACE molecule could be involved in the action of GRH, the effects of thiol reducing agents: mercaptoethanol and dithiotreitol (DTT) were investigated. These compounds produced a dose-dependent and significant protection; with 100% protection at 0.2 and 0.3 mM for mercaptoethanol and at 0.1 mM for DTT. The hydrolysis of two natural and domain-specific substrates were also explored. The hydrolysis of angiotensin I preferentially cleaved by the C domain was significantly (p < 0.01) inhibited by 57, 58 and 69% in contact with 0.3, 1 and 3 mM GRH [in nmol angio II formed/min/nmol of ACE, n = 4; 35.9 +/- 0.6 (control), 15.5 +/- 2.8 (GRH : 0.3 mM), 15.1 +/- 0.5 (1), 10.9 +/- 0.6 (3)]. The hydrolysis of the hemoregulatory peptide (hp), preferential substrate for the N domain was not affected by GRH at 0.3 mM and inhibited by 28% (not significant) by 1 mM GRH [in nmol ph hydrolized/min/nmol ACE, n = 4; 12.6 +/- 1.9 (control), 14.9 (GRH : 0.3 mM), 8.3 +/- 4.0 (1). These results demonstrated that .OH affect ACE activity and could suggest a privileged impact of GRH on the C domain. The precise sites of action of .OH remain unknown. The Cys residues near the active centers, by forming disulphide bridges during the oxidation could be of critical importance. Further studies will be needed to determine whether oxidative stress again ACE can be involved in the genesis of inflammatory vascular pathologies.

Publication types

  • English Abstract

MeSH terms

  • Enzyme Activation
  • Hydroxyl Radical / metabolism*
  • Peptidyl-Dipeptidase A / metabolism*

Substances

  • Hydroxyl Radical
  • Peptidyl-Dipeptidase A