Send to

Choose Destination
Biochim Biophys Acta. 1998 Sep 8;1387(1-2):395-405.

Steady-state kinetic mechanism, stereospecificity, substrate and inhibitor specificity of Enterobacter cloacae nitroreductase.

Author information

Department of Biophysics, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.


Enterobacter cloacae nitroreductase (NR) is a flavoprotein which catalyzes the pyridine nucleotide-dependent reduction of nitroaromatics. Initial velocity and inhibition studies have been performed which establish unambiguously a ping-pong kinetic mechanism. NADH oxidation proceeds stereospecifically with the transfer of the pro-R hydrogen to the enzyme and the amide moiety of the nicotinamide appears to be the principal mediator of the interaction between NR and NADH. 2,4-Dinitrotoluene is the most efficient oxidizing substrate examined, with a kcat/KM an order of magnitude higher than those of p-nitrobenzoate, FMN, FAD or riboflavin. Dicoumarol is a potent inhibitor competitive vs. NADH with a Ki of 62 nM. Several compounds containing a carboxyl group are also competitive inhibitors vs. NADH. Yonetani-Theorell analysis of dicoumarol and acetate inhibition indicates that their binding is mutually exclusive, which suggests that the two inhibitors bind to the same site on the enzyme. NAD+ does not exhibit product inhibition and in the absence of an electron acceptor, no isotope exchange between NADH and 32P-NAD+ could be detected. NR catalyzes the 4-electron reduction of nitrobenzene to hydroxylaminobenzene with no optically detectable net formation of the putative two-electron intermediate nitrosobenzene.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center