Send to

Choose Destination
Plant J. 1998 Jul;15(1):89-98.

Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant.

Author information

Department of Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Universiteit Gent, Belgium.


Pyruvate orthophosphate dikinase (PPDK) is known for its role in C4 photosynthesis but has no established function in C3 plants. Abscisic acid, PEG and submergence were found to markedly induce a protein of about 97 kDa, identified by microsequencing as PPDK, in rice roots (C3). The rice genome was found to contain two ppdk loci, osppdka and osppdkb. We isolated osppdka cDNA, which encodes a cytosolic rice PPDK isoform of 96.6 kDa, that corresponded to the ABA-induced protein from roots. Western blot analysis showed a PPDK induction in roots of rice seedlings during gradual drying, cold, high salt and mannitol treatment, indicating a water deficit response. PPDK was also induced in the roots and sheath of submerged rice seedlings, and in etiolated rice seedlings exposed to an oxygen-free N2 atmosphere, which indicated a low-oxygen stress response. None of the stress treatments induced PPDK protein accumulation in the lamina of green rice seedlings. Ppdk transcripts were found to accumulate in roots of submerged seedlings, concomitant with the induction of alcohol dehydrogenase 1. Low-oxygen stress triggered an increase in PPDK activity in roots and etiolated rice seedlings, accompanied by increases in phosphoenolpyruvate carboxylase and malate dehydrogenase activities. The results indicate that cytosolic PPDK is involved in a metabolic response to water deficit and low-oxygen stress in rice, an anoxia-tolerant species.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center