Format

Send to

Choose Destination
Mol Cell. 1998 Aug;2(2):183-9.

MEC1-dependent phosphorylation of Rad9p in response to DNA damage.

Author information

1
Division of Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. aemili@fhcrc.org

Abstract

In budding yeast, DNA damage can activate a checkpoint surveillance system controlled by the RAD9, RAD53, and MEC1 genes, resulting in a delay in cell cycle progression. Here, I report that DNA damage induces rapid and extensive phosphorylation of Rad9p in a manner that correlates directly with checkpoint activation. This response is dependent on MEC1, which encodes a member of the evolutionarily conserved ATM family of protein kinases, and on gene products of the RAD24 epistasis group, which have been implicated in the recognition and processing of DNA lesions. Since the phosphorylated form of Rad9p appears capable of interacting stably with Rad53p in vivo, this phosphorylation response likely controls checkpoint signaling by Rad9p.

PMID:
9734355
DOI:
10.1016/s1097-2765(00)80128-8
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center