Send to

Choose Destination
See comment in PubMed Commons below
Neuron. 1998 Aug;21(2):335-45.

Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses.

Author information

European Molecular Biology Laboratory, Heidelberg, Germany.


Neurotrophins are a family of soluble ligands that promote the survival and differentiation of peripheral and central neurons and regulate synaptic function. The two neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), bind and activate a single high-affinity receptor, TrkB. Experiments in cell culture have revealed that an intact Shc adaptor binding site on TrkB and subsequent activation of the Ras/MAPK pathway are important for neuronal survival and neurite outgrowth. To elucidate the intracellular signaling pathways that mediate the diverse effects of BDNF and NT4 in vivo, we have mutated in the mouse germline the Shc binding site in the trkB gene. This trkB(shc) mutation revealed distinctive responses to BDNF and NT4. While nearly all NT4-dependent sensory neurons were lost in trkB(shc/shc) mutant mice, BDNF-dependent neurons were only modestly affected. Activation of MAP kinases and in vitro survival of cultured trkB(shc/shc) neurons were reduced in response to both neurotrophins, with NT4 being less potent than BDNF, suggesting differential activation of TrkB by the two ligands. Moreover, while the Ras/MAPK pathway is required for in vitro differentiation of neuronal cells, trkB(shc/shc) mutant mice do not show any defects in BDNF-dependent differentiation of CNS neurons or in the function of sensory neurons that mediate innocuous touch.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center