Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Sep 4;273(36):22983-9.

Functional F1-ATPase essential in maintaining growth and membrane potential of human mitochondrial DNA-depleted rho degrees cells.

Author information

Centre de Génétique Moléculaire et Cellulaire, UMR 5534, CNRS, Université Claude Bernard de Lyon I, 69622 Villeurbanne cedex, France.


F1-ATPase assembly has been studied in human rho degrees cells devoid of mitochondrial DNA (mtDNA). Since, in these cells, oxidative phosphorylation cannot provide ATP, their growth relies on glycolysis. Despite the absence of the mtDNA-coded F0 subunits 6 and 8, rho degrees cells possessed normal levels of F1-ATPase alpha and beta subunits. This F1-ATPase was functional and azide- or aurovertin-sensitive but oligomycin-insensitive. In addition, aurovertin decreased cell growth in rho degrees cells and also reduced their mitochondrial membrane potential, as measured by rhodamine 123 fluorescence. Therefore, a functional F1-ATPase was important to maintain the mitochondrial membrane potential and the growth of these rho degrees cells. Bongkrekic acid, a specific adenine nucleotide translocator (ANT) inhibitor, also reduced rho degrees cell growth and mitochondrial membrane potential. In conclusion, rho degrees cells need both a functional F1-ATPase and a functional ANT to maintain their mitochondrial membrane potential, which is necessary for their growth. ATP hydrolysis catalyzed by F1 must provide ADP3- at a sufficient rate to maintain a rapid exchange with the glycolytic ATP4- by ANT, this electrogenic exchange inducing a mitochondrial membrane potential efficient enough to sustain cell growth. However, since the effects of bongkrekic acid and of aurovertin were additive, other electrogenic pumps should cooperate with this pathway.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center