Format

Send to

Choose Destination
Glycobiology. 1998 Oct;8(10):955-62.

Isolation and characterization of the major form of polyprenyl-phospho-mannose from Mycobacterium smegmatis.

Author information

1
Department of Applied Chemistry and Bioindustries and Department of Chemistry, University of Louvain, Louvain, Belgium.

Abstract

We isolated from the endogenous polyprenyl-phospho-sugar pool of Mycobacterium smegmatis two mannose-containing compounds, i.e., a partially saturated C35-octahydroheptaprenyl-P-mannose and a fully unsaturated C50-decaprenyl-P-mannose. The relative amount of C35-polyprenyl-P-mannose in mycobacterial cells was comparable to that of decaprenyl- P-pentoses and, at least, an order of magnitude higher than that of C50-decaprenyl-P-mannose. The major form of mycobacterial polyprenyl-P-mannose was structurally characterized by combined gas chromatography-mass spectrometry, fast-atom bombardment tandem mass spectrometry and proton-nuclear magnetic resonance spectroscopy as beta-d-mannopyranosyl-monophospho-(C35)octahydroheptapren ol of which all three isoprene units have Z ( cis ) configuration. The differences in the structure and cellular concentrations of the mycobacterial mannosyl-P-polyprenols reflect distinct biochemical pathways of the two compounds and suggest the existence of specific GDP-Man:polyprenyl-P mannosyltransferases (synthetases) able to distinguish between C35-octahydroheptaprenyl- and C50-decaprenyl- phosphates of mycobacteria. Since the 6'-O-mycoloylated form of C35-octahydroheptaprenyl-P-mannose isolated from M. smegmatis is apparently involved in mycolate rather than mannosyl transfer reactions, we speculate that a catabolic pathway responsible for degradation of C35-P-mannose and recycling C35-octahydroheptaprenyl phosphate might exist in mycobacteria.

PMID:
9719676
DOI:
10.1093/glycob/8.10.955
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center