Send to

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 1998 Sep;111 ( Pt 18):2741-51.

Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis.

Author information

  • 1Department of Clinical Research, University of Berne, Tiefenaustrasse 120, CH-3004 Berne, Switzerland.


Morphogenesis of the mammary gland occurs mainly during adult life and is dependent on a complex interplay of hormonal, cell-cell and cell-matrix interactions. The molecular mechanisms involved in pattern formation of the mammary epithelium in adult life are poorly understood. Recently, several members of the Eph family of receptor tyrosine kinases and their ligands have been shown to participate in pattern formation during embryogenesis and conceivably may fulfill similar functions during adult morphogenesis. We have investigated the expression of a member of this family, EphB4, and its cognate ligand, ephrin-B2, during normal and malignant mouse mammary morphogenesis. A spatially, temporarily and hormonally coordinated expression of both the receptor and ligand was observed. The receptor was predominantly localized in the myoepithelial cells surrounding the ducts and alveoli whereas ligand expression was limited to the luminal epithelial cells. Expression of both was induced at the onset of gland morphogenesis at puberty and was differentially regulated during the estrus cycle. Ovariectomy of pre-pubertal or adult females abolished the expression of both receptor and ligand and administration of estrogen alone was sufficient to restore their normal expression. Disruption of the balanced expression was observed during experimental mouse mammary carcinogenesis. Ligand expression was lost at the onset of tumorigenesis and receptor expression shifted from myoepithelial to epithelial cells with progressive malignancy. These results implicate both the EphB4 receptor and its ligand ephrin-B2 in the hormone dependent morphogenesis of the mammary gland. Furthermore, their deregulated expression may contribute to mammary carcinogenesis.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center