Format

Send to

Choose Destination
Cell Motil Cytoskeleton. 1998;40(4):368-78.

Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movement along microtubules.

Author information

1
Department of Biological Sciences, Rutgers University-Newark, New Jersey, USA.

Abstract

In activated sea urchin coelomocytes, cytoplasmic organelles move along distinct actin and microtubule dependent pathways, actin-based motility is driven by an unconventional myosin, and microtubule disassembly does not effect actin-dependent organelle motility [D'Andrea et al., 1994: J. Cell Sci. 107:2081-2094]. Given the growing evidence for potential interactions between components of the actin and microtubule cytoskeletons, we examined the effect of actin filament disassembly on the movement of mitochondria along microtubules in activated coelomocytes. Coelomocytes treated with cytochalasin B (CB), to disrupt actin filaments, exhibited a thinning of the cytoplasm, enhanced lateral undulation of microtubules, and ceased centripetal cortical flow of actin. Interestingly, the loss of actin filaments resulted in a approximately 1.5-fold increase in the average velocity of outward and inward moving mitochondria and increased the frequency of centripetal movement. To test if enhanced motility along microtubules was a consequence of decreased actin-myosin interaction, coelomocytes were treated with 2,3-butanedione monoxime (BDM), a potent inhibitor of myosin activity [Cramer and Mitchison, 1995: J. Cell Biol. 131:179-189]. BDM inhibited all types of actin-based motility observed in these cells including retrograde cortical flow, protrusion and retraction of the cell edge, and movement of intracellular organelles. Surprisingly, BDM treatment stopped the movement of mitochondria in CB-exposed cells, suggesting that BDM can also act as an inhibitor of organelle movement along microtubules. Collectively, these data demonstrated that microtubule-dependent mitochondrial motility and microtubule movement were sensitive to changes in the assembly state of the actin cytoskeleton.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center