Format

Send to

Choose Destination
Mol Cell Biol. 1998 Sep;18(9):5291-307.

Identification of a proline-rich sequence in the CD2 cytoplasmic domain critical for regulation of integrin-mediated adhesion and activation of phosphoinositide 3-kinase.

Author information

1
Department of Laboratory Medicine and Pathology, Center for Immunology, and Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.

Abstract

The CD2 molecule is one of several lymphocyte receptors that rapidly initiates signaling events regulating integrin-mediated cell adhesion. CD2 stimulation of resting human T cells results within minutes in an increase in beta1-integrin-mediated adhesion to fibronectin. We have utilized the HL60 cell line to map critical residues within the CD2 cytoplasmic domain involved in CD2 regulation of integrin function. A panel of CD2 cytoplasmic domain mutants was constructed and analyzed for their ability to upregulate integrin-mediated adhesion to fibronectin. Mutations in the CD2 cytoplasmic domain implicated in CD2-mediated interleukin-2 production or CD2 avidity do not affect CD2 regulation of integrin activity. A proline-rich sequence, K-G-P-P-L-P (amino acids 299 to 305), is essential for CD2-mediated regulation of beta1 integrin activity. CD2-induced increases in beta1 integrin activity could be blocked by two phosphoinositide 3-kinase (PI 3-K) inhibitors or by overexpression of a dominant negative form of the p85 subunit of PI 3-K. In addition, CD2 cytoplasmic domain mutations that abrogate CD2-induced increases in integrin-mediated adhesion also ablate CD2-induced increases in PI 3-K enzymatic activity. Surprisingly, CD2 cytoplasmic domain mutations that inhibit CD2 regulation of adhesion do not affect the constitutive association of the p85 subunit of PI 3-K association with CD2. Mutation of the proline residues in the K-G-P-P-L-P motif to alanines prevented CD2-mediated activation of integrin function and PI 3-K activity but not mitogen-activated protein (MAP) kinase activity. Furthermore, the MEK inhibitor PD 098059 blocked CD2-mediated activation of MAP kinase but had no effect on CD2-induced adhesion. These studies identify a proline-rich sequence in CD2 critical for PI 3-K-dependent regulation of beta1 integrin adhesion by CD2. In addition, these studies suggest that CD2-mediated activation of MAP kinase is not involved in CD2 regulation of integrin adhesion.

PMID:
9710614
PMCID:
PMC109115
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center