Format

Send to

Choose Destination
J Cell Biochem. 1998 Sep 1;70(3):304-12.

Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity.

Author information

1
Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.

Abstract

Polysialic acid (PSA) is a long polymer of negatively-charged sialic acid associated with the neural cell adhesion molecule. PSA serves as a potent negative regulator of cell interactions via its unusual biophysical properties. During development the abundant and regulated expression of this carbohydrate is closely correlated with axon pathfinding and targeting, and with certain aspects of muscle formation. Its level can also be modulated by synaptic activity. PSA expression is more restricted in the neonatal and adult brain, being primarily associated with regions capable of morphological or physiological changes. Studies on the function of PSA studies suggest that its primary role is to promote developmentally-controlled and activity-dependent plasticity in cell interactions and thereby facilitate changes in the structure and function of the nervous system. The presence of PSA on a variety of metastatic tumor lines has also attracted the attention of oncologists, and its late appearance in evolution raises interesting questions about the phylogeny of complex tissue formation.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center