Format

Send to

Choose Destination
See comment in PubMed Commons below
Invert Neurosci. 1997 Jun;3(1):15-25.

Functions of the LE sensory neurons in Aplysia.

Author information

1
Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School 77030, USA. ewalters@girch1.med.uth.tmc.edu

Abstract

Mechanosensory neurons which innervate the siphon and have their cell bodies in the LE cluster of the abdominal ganglion of Aplysia have revealed many cellular and molecular processes that may play general roles in learning and memory. It was initially suggested that these cells are largely responsible for triggering the gill-withdrawal reflex evoked by weak siphon stimulation, and that most of this effect is mediated by their monosynaptic connections to gill motor neurons. This implied a simple link between plasticity at these synapses and modifications of the reflex during learning. We review more recent studies from several laboratories showing that the LE cells are not activated by very weak tactile stimuli that elicit the gill-withdrawal reflex, and that an unidentified population of siphon sensory neurons has lower mechanosensory thresholds and produces shorter latency responses. Furthermore, the direct connections between LE cells and gill motor neurons make a minor contribution when the reflex is elicited in pinned siphon preparations by light stimuli that weakly activate the LE cells. Because weak mechanical stimulation of the unrestrained siphon causes little or no LE cell activation, it is unlikely that, under natural conditions, sensitization or conditioning of reflex responses elicited by light siphon touch depends upon plasticity of LE cell synapses onto either motor or interneurons. The LE cells appear to function as nociceptors because they are tuned to noxious stimuli and, like mammalian nociceptors, show peripheral sensitization following nociceptive activation. This sensitization and the profound activity-dependent potentiation of LE synapses indicate that LE cell contributions to defensive reflexes should be largest during and after intense activation of the LE cells by noxious stimulation (with the LE cell plasticity contributing to long-lasting memory of peripheral injury). The LE sensory neurons offer special opportunities for direct tests of this and other hypotheses about specific mnemonic functions of fundamental mechanisms of neural plasticity.

PMID:
9706699
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center