Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Aug 14;273(33):20903-9.

Chylomicron-specific enhancement of acylation stimulating protein and precursor protein C3 production in differentiated human adipocytes.

Author information

  • 1Mike Rosenbloom Laboratory for Cardiovascular Research, McGill University Health Center, McGill University, Montreal, Quebec H3A 1A1, Canada.

Abstract

Acylation stimulating protein (ASP) is a potent stimulator of adipocyte triacylglycerol storage. In vivo studies have shown that ASP production by adipocytes increases locally after a fat meal. Initial in vitro studies demonstrated increased production of ASP in the presence of chylomicrons (CHYLO). The present aim was to define the CHYLO component responsible. None of the apoproteins tested (AI, AII, AIV, CI, CII, CIII, and E) were capable of stimulating C3 (the precursor protein) or ASP production. Rather, the active component is a nonlipid, loosely associated, trypsin-sensitive molecule. High pressure liquid chromatography fractionation of the CHYLO infranate proteins identified the critical protein as transthyretin (TTR), which binds retinol-binding protein and complexes thyroxine and retinol. Addition of TTR alone, with lipid emulsion, or with respun CHYLO to human differentiated adipocytes had little effect on C3 and ASP production. By contrast, when transthyretin was added to CHYLO, C3 and ASP production were substantially enhanced up to 75- and 7. 5-fold respectively, compared with the effect of native CHYLO alone. Finally, a polyclonal antibody against TTR could inhibit stimulation of C3 and ASP production by CHYLO (by 98 and 100%, respectively) and by CHYLO infranate proteins (by 99 and 94%, respectively). We hypothesize that TTR mediates the transfer of the active components from CHYLO to adipocytes, which then stimulates increased C3 and ASP production. Thus the CHYLO provides the physiologic trigger of the ASP pathway.

PMID:
9694837
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center