Send to

Choose Destination
Blood. 1998 Aug 15;92(4):1406-14.

Aspirin and salicylate induce apoptosis and activation of caspases in B-cell chronic lymphocytic leukemia cells.

Author information

Departament de Ciències Fisiològiques II, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet, Barcelona, Spain.


We analyzed the effect of aspirin, salicylate, and other nonsteroidal antiinflammatory drugs (NSAIDs) on the viability of B-chronic lymphocytic leukemia (B-CLL) cells. Aspirin induced a decrease in cell viability in a dose- and time-dependent manner. The mean IC50 for cells from 5 patients was 5.9 +/- 1.13 mmol/L (range, 4.4 to 7.3 mmol/L). In some cases, 2.5 mmol/L aspirin produced an important cytotoxic effect after 4 days of incubation. No effect was observed with other NSAIDs, at concentrations that inhibit cyclooxygenase, such as ketorolac (10 micromol/mL), NS-398 (100 micromol/mL), or indomethacin (20 micromol/mL), thus suggesting the involvement of cyclooxygenase-independent mechanisms in aspirin-induced cytotoxicity. Salicylate also produced dose-dependent cytotoxic effects on B-CLL cells and the mean IC50 for cells from 5 patients was 6.96 +/- 1.13 mmol/L (range, 5 to 7.8 mmol/L). Both aspirin and salicylate induced DNA fragmentation and the proteolytic cleavage of poly(ADP(adenosine 5'-diphosphate)-ribose) polymerase (PARP), demonstrating that both compounds induce apoptosis of B-CLL cells. Finally, inhibition of caspases by Z-VAD.fmk blocked proteolytic cleavage of PARP, DNA fragmentation, and cytotoxicity induced by aspirin. Mononuclear cells from normal donors showed a lower sensitivity than cells from B-CLL patients to aspirin as determined by analysis of cell viability. B and T lymphocytes from normal donors and T lymphocytes from CLL patients are more resistant to aspirin-induced apoptosis, as determined by analysis of phosphatidylserine exposure. These results indicate that aspirin and salicylate induce apoptosis of B-CLL cells by activation of caspases and that this activation involves cyclooxygenase-independent mechanisms.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center