Format

Send to

Choose Destination
J Immunol Methods. 1998 Apr 15;213(2):157-67.

A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity.

Author information

1
Division of Geriatrics, Cornell University Medical College, New York, NY 10021, USA.

Abstract

In this study, a fluorometric method using alamarBlue has been developed for detecting cell-mediated cytotoxicity in vitro. AlamarBlue is a non-toxic metabolic indicator of viable cells that becomes fluorescent upon mitochondrial reduction. Specific lysis of targets by effector cells is quantified by comparing the total number of viable cells in wells containing effector and targets together, with wells where target and effector cells were separately seeded. Cell-mediated cytotoxic activity by alloreactive T cells and natural killer cells has been detected using a novel application of the alamarBlue technique. The assay that we have developed to detect cell-mediated cytotoxicity is extremely sensitive and specific and requires a significant lower number of effector cells than the standard 51Cr assay. Since alamarBlue reagent is non-toxic to cells and the assay can be performed under sterile conditions, effector cells may be recovered at the end for further analysis or cell expansion, if desired. Direct comparison of cell-mediated cytotoxicity measured by the alamarBlue method with the standard 51Cr release assay revealed that the former method is as specific and more sensitive than the conventional assay. Moreover, very small inter and intra-assay variations have been observed for alamarBlue cytotoxicity assays. In conclusion, this study shows that the alamarBlue assay is an extremely sensitive, economical, simple and non-toxic procedure to evaluate cell-mediated cytotoxicity that yields accurate results using a limited number of effector cells. Furthermore, since this assay is a one-step procedure, and does not involve any risk for the personnel, it may be useful to analyze automatically cell-mediated cytotoxicity in a large number of samples.

PMID:
9692848
DOI:
10.1016/s0022-1759(98)00028-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center