Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 1998 Aug;149(4):2135-46.

Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes.

Author information

  • 1Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.


Several features of the biology of mitochondria suggest that mitochondria might be susceptible to Muller's ratchet and other forms of evolutionary degradation: Mitochondria have predominantly uniparental inheritance, appear to be nonrecombining, and have high mutation rates producing significant deleterious variation. We demonstrate that the persistence of mitochondria may be explained by recent data that point to a severe "bottleneck" in the number of mitochondria passing through the germline in humans and other mammals. We present a population-genetic model in which deleterious mutations arise within individual mitochondria, while selection operates on assemblages of mitochondria at the level of their eukaryotic hosts. We show that a bottleneck increases the efficacy of selection against deleterious mutations by increasing the variance in fitness among eukaryotic hosts. We investigate both the equilibrium distribution of deleterious variation in large populations and the dynamics of Muller's ratchet in small populations. We find that in the absence of the ratchet, a bottleneck leads to improved mitochondrial performance and that, over a longer time scale, a bottleneck acts to slow the progression of the ratchet.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk