Send to

Choose Destination
See comment in PubMed Commons below
Brain Res. 1998 Jun 15;796(1-2):38-44.

Chronic (-) deprenyl administration increases dendritic arborization in CA3 neurons of hippocampus and AChE activity in specific regions of the primate brain.

Author information

Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India.


The mechanism by which (-) deprenyl enhances cognitive function in Alzheimer's disease (AD) is not yet understood. (-) Deprenyl (0.2 mg/kg/day) was administered intramuscularly to adult male monkeys (n = 6) for 25 days. Control monkeys (n = 6) received physiological saline by the same route. The activity of acetylcholinesterase (AChE) in different brain regions and the dendritic arborization in CA3 pyramidal neurons of hippocampus were analysed. (-) Deprenyl-treated monkeys showed a significant increase in the AChE activity by 43% (p < 0.001) in the frontal cortex, by 39% (p < 0.025) in the motor cortex, by 66% (p < 0.001) in the hippocampus and by 26% (p < 0.05) in the striatum compared to controls. The branching points and the intersections of both apical and basal dendrites of CA3 hippocampal pyramidal neurons were also significantly increased in (-) deprenyl-treated monkeys. Enhanced AChE activity may increase dendritic arborization in the hippocampus and it may also play a role in improving cognitive functions observed in AD, following (-) deprenyl treatment.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center