Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Aug 7;273(32):20589-95.

Tyrosine phosphorylation and proteolysis. Pervanadate-induced, metalloprotease-dependent cleavage of the ErbB-4 receptor and amphiregulin.

Author information

1
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.

Abstract

Enhancement of tyrosine phosphorylation in cells by the application of pervanadate, an extremely potent phosphotyrosine phosphatase inhibitor, provokes the rapid metalloprotease-dependent cleavage of ErbB-4, a transmembrane receptor tyrosine kinase. The pervanadate-induced proteolysis occurs in NIH 3T3 cells expressing transfected human ErbB-4 and in several cell lines that express endogenous ErbB-4. One product of this proteolytic event is a membrane-anchored molecule of approximately 80 kDa, which is heavily tyrosine phosphorylated and which possesses tyrosine kinase catalytic activity toward an exogenous substrate in vitro. This response to pervanadate is not dependent on protein kinase C activation, which has previously been demonstrated to also activate ErbB-4 cleavage. Hence, the pervanadate and 12-O-tetradecanoylphorbol-13-acetate-induced proteolytic cleavage of ErbB-4 seem to proceed by different mechanisms, although both require metalloprotease activity. Moreover, pervanadate activation of ErbB-4 cleavage, but not that of 12-O-tetradecanoylphorbol-13-acetate , is blocked by the oxygen radical scavenger pyrrolidine dithiocarbomate. A second phosphotyrosine phosphatase inhibitor, phenylarsine oxide, also stimulates a similar cleavage of ErbB-4 but, unlike pervanadate, is not sensitive to pyrrolidine dithiocarbomate. Last, pervanadate is shown to stimulate the proteolytic cell surface processing of a second and unrelated transmembrane molecule: the precursor for amphiregulin, an epidermal growth factor-related molecule. Amphiregulin cleavage by pervanadate occurred in the absence of a cytoplasmic domain and tyrosine phosphorylation of this substrate.

PMID:
9685416
[Indexed for MEDLINE]
Free full text

Publication types, MeSH terms, Substances, Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center