Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Aug 7;273(32):20213-22.

Multiple G1 regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells.

Author information

1
Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California 92093-0660, USA.

Abstract

Prostatic epithelial cells and most primary prostate tumors are dependent on androgen for growth, but how androgen regulates cellular proliferation remains unsolved. Using poorly understood mechanisms, recurrent tumor cells evade the androgen requirement. We utilized androgen-dependent prostatic tumor cells to demonstrate that androgen exerts its effect on the cell cycle by influencing specific aspects of G1-S progression. Androgen depletion of these cells results in early G1 arrest, characterized by reduced cyclin-dependent kinase activity, and underphosphorylated retinoblastoma tumor suppressor protein (RB). The reduction in kinase activity was partially attributed to reduction of specific G1 cyclins and alternate regulation of cyclin-dependent kinase inhibitors. Using this information, we developed a reliable assay to assess the ability of specific G1 regulatory proteins to circumvent these controls and promote androgen-independent growth. As expected, inactivation of RB was required for progression through the cell cycle. Surprisingly, overexpression of G1 cyclins, which drives RB phosphorylation, was insufficient to promote androgen-independent cell cycle progression. Introduction of viral oncoproteins did promote G1-S progression in the absence of androgen, dependent on their ability to sequester RB and related proteins. These results provide the first evidence that multiple elements governing the G1-S transition dictate androgen-dependent growth, and the formation of androgen-independent prostatic tumors may be because of misregulation of these processes.

PMID:
9685369
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center