Send to

Choose Destination
Plant J. 1998 Jan;13(2):267-73.

Expression of a soybean nodule-enhanced phosphoenolpyruvate carboxylase gene that shows striking similarity to another gene for a house-keeping isoform.

Author information

Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Japan.


Three different cDNAs for phosphoenolpyruvate carboxylase (PEPC) were isolated from soybean root nodules. The full-length cDNA of the most abundant isoform (GmPEPC7) was very similar to another one (GmPEPC15), the nucleotide sequence of which is identical to that of a reported clone (gmppc1) (Vazquez-Tello, A., Whittier, R.F., Kawasaki, T., Sugimoto, T., Kawamura, Y. and Shibata, D. (1993) Plant Physiol. 103, 1025-1026). In the coding region, the newly isolated GmPEPC7 and the previously reported were gmppc1 99% and 98% identical at the amino acid and nucleotide levels, respectively. In contrast, they exhibited only 39% identity in the 3' non-coding region, indicating that they are encoded by distinct genes. Northern blot analysis with 3' non-coding regions as isoform-specific probes showed that GmPEPC7 is nodule-enhanced whereas GmPEPC15 (gmppc1) is expressed in most soybean tissues. The third clone (GmPEPC4) was much less homologous to the above two clones and thus was not further characterized. It was also shown by in situ hybridization that the nodule-enhanced isoform is expressed in all cell types in nodules, including in Bradyrhizobium-infected and uninfected cells and cortical cells. A relatively strong hybridization signal was detected in the vascular bundle pericycle. Southern blot analysis indicated that there are only two PEPC genes exhibiting a high degree of similarity in the soybean genome, one for the nodule-enhanced GmPEPC7 and the other for the constitutively expressed gmppc1. A phylogenetic tree based on the amino acid sequences of soybean PEPCs and nodule-enhanced PEPCs of alfalfa and pea suggested that the soybean nodule-enhanced isoform evolved from the housekeeping PEPC gene after the ureid-translocating and amide-translocating legumes diverged from each other.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center