Format

Send to

Choose Destination
Genes Funct. 1997 Jun;1(3):205-13.

A mammalian homologue of the Drosophila retinal degeneration B gene: implications for the evolution of phototransduction mechanisms.

Author information

1
Telethon Institute of Genetics and Medicine, San Raffaele Biomedical Science Park, Milan, Italy.

Abstract

Comparative analysis of homologous genes in distantly related species provides important insights into the evolution of complex physiological processes. The Drosophila retinal degeneration B (rdgB) gene encodes a protein involved in phototransduction in the fly. We have isolated a human gene, DRES9, and its murine homologue (Dres9), which show a high degree of similarity to the Drosophila rdgB gene. RNA in situ hybridization studies performed on mouse-embryo tissue sections at various developmental stages revealed that Dres9 is expressed at very high levels in the neural retina and in the central nervous system (CNS), similar to its Drosophila counterpart. The high level of sequence conservation and similarities in the expression patterns of rdgB and DRES9 during development in Drosophila and mammals indicate that Dres9 is the orthologue of RdgB, and strongly suggest a possible functional conservation of these proteins during evolution. DRES9 encodes a phosphatidylinositol-transfer protein, suggesting that phosphatidylinositol may have a role as an intracellular messenger in vertebrate phototransduction. The identification of this gene and the study of its expression pattern in mammals will help shed new light on the evolution of vision mechanisms and suggest DRES9 as a candidate gene for human retinopathies.

PMID:
9680295
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center