Format

Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 1998 Aug;201 (Pt 16):2383-95.

A study of the temporary adhesion of the podia in the sea star asterias rubens (Echinodermata, asteroidea) through their footprints

Author information

  • 1Laboratoire de Biologie Marine, Laboratoire de Chimie Biologique, Laboratoire de Biologie et d'Embryologie, Universite de Mons-Hainaut, B-7000 Mons, Belgium and Laboratoire de Biologie Marine (CP 160/15), Universite Libre de Bruxe.

Abstract

Sea stars are able to make firm but temporary attachments to various substrata owing to secretions released by their podia. A duo-glandular model has been proposed in which an adhesive material is released by two types of non-ciliated secretory (NCS1 and NCS2) cells and a de-adhesive material is released by ciliated secretory (CS) cells. The chemical composition of these materials and the way in which they function have been investigated by studying the adhesive footprints left by the asteroids each time they adhere to a substratum. The footprints of Asterias rubens consist of a sponge-like material deposited as a thin layer on the substratum. Inorganic residues apart, this material is made up mainly of proteins and carbohydrates. The protein moiety contains significant amounts of both charged (especially acidic) and uncharged polar residues as well as half-cystine. The carbohydrate moiety is also acidic, comprising both uronic acids and sulphate groups. Polyclonal antibodies have been raised against footprint material and were used to locate the origin of footprint constituents in the podia. Extensive immunoreactivity was detected in the secretory granules of both NCS1 and NCS2 cells, suggesting that their secretions together make up the bulk of the adhesive material. No immunoreactivity was detected in the secretory granules of CS cells, and the only other structure strongly labelled was the outermost layer of the cuticle, the fuzzy coat. This pattern of immunoreactivity suggests that the secretions of CS cells are not incorporated into the footprints, but instead might function to jettison the fuzzy coat, thereby allowing the podium to detach.

PMID:
9679100
[PubMed - as supplied by publisher]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center