Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1998 Jul 21;37(29):10438-45.

Reaction of alanine racemase with 1-aminoethylphosphonic acid forms a stable external aldimine.

Author information

  • 1Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02254, USA.

Erratum in

  • Biochemistry 1999 May 18;38(20):6714. Stamper CG [corrected to Stamper GF].

Abstract

(R)-1-Aminoethylphosphonic acid (L-Ala-P), a synthetic L-alanine analogue, has antibacterial activity and is a time-dependent inactivator of all purified Gram-positive bacterial alanine racemases that have been tested. L-Ala-P forms an external aldimine with the bound pyridoxal 5'-phosphate (PLP) cofactor, but is neither racemized nor efficiently hydrolyzed. To understand the structural basis of the inactivation of the enzyme by L-Ala-P, we determined the crystal structure of the complex between L-Ala-P and alanine racemase at 1.6 A resolution. The cofactor derivative in the inhibited structure tilts outward from the protein approximately 20 degrees relative to the internal aldimine. The phosphonate oxygens are within hydrogen bonding distance of four amino acid residues and two water molecules in the active site of the enzyme. L-Ala-P is an effective inhibitor of alanine racemase because, upon formation of the external aldimine, the phosphonate group interacts with putative catalytic residues, thereby rendering them unavailable for catalysis. Furthermore, this aldimine appears to be inappropriately aligned for efficient Calpha proton abstraction. The combination of these effects leads to a stable aldimine derivative and potent inactivation of alanine racemase by this compound.

PMID:
9671513
DOI:
10.1021/bi980692s
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center