Send to

Choose Destination
See comment in PubMed Commons below
Magn Reson Imaging. 1998 May;16(4):413-21.

A hybrid neural network analysis of subtle brain volume differences in children surviving brain tumors.

Author information

Department of Diagnostic Imaging, St. Jude Children's Research Hospital, University of Memphis, TN 38105, USA.


In the treatment of children with brain tumors, balancing the efficacy of treatment against commonly observed side effects is difficult because of a lack of quantitative measures of brain damage that can be correlated with the intensity of treatment. We quantitatively assessed volumes of brain parenchyma on magnetic resonance (MR) images using a hybrid combination of the Kohonen self-organizing map for segmentation and a multilayer backpropagation neural network for tissue classification. Initially, we analyzed the relationship between volumetric differences and radiologists' grading of atrophy in 80 subjects. This investigation revealed that brain parenchyma and white matter volumes significantly decreased as atrophy increased, whereas gray matter volumes had no relationship with atrophy. Next, we compared 37 medulloblastoma patients treated with surgery, irradiation, and chemotherapy to 19 patients treated with surgery and irradiation alone. This study demonstrated that, in these patients, chemotherapy had no significant effect on brain parenchyma, white matter, or gray matter volumes. We then investigated volumetric differences due to cranial irradiation in 15 medulloblastoma patients treated with surgery and radiation therapy, and compared these with a group of 15 age-matched patients with low-grade astrocytoma treated with surgery alone. With a minimum follow-up of one year after irradiation, all radiation-treated patients demonstrated significantly reduced white matter volumes, whereas gray matter volumes were relatively unchanged compared with those of age-matched patients treated with surgery alone. These results indicate that reductions in cerebral white matter: 1) are correlated significantly with atrophy; 2) are not related to chemotherapy; and 3) are correlated significantly with irradiation. This hybrid neural network analysis of subtle brain volume differences with magnetic resonance may constitute a direct measure of treatment-induced brain damage.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center