Send to

Choose Destination
Curr Biol. 1998 Jul 2;8(14):843-6.

A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase.

Author information

Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.


Chromatin structure plays a crucial regulatory role in the control of gene expression. In eukaryotic nuclei, enzymatic complexes can alter this structure by both targeted covalent modification and ATP-dependent chromatin remodeling. Modification of histone amino termini by acetyltransferases and deacetylases correlates with transcriptional activation and repression [1-3], cell growth [4], and tumorigenesis [5]. Chromatin-remodeling enzymes of the Snf2 superfamily use ATP hydrolysis to restructure nucleosomes and chromatin, events which correlate with activation of transcription [6,7]. We purified a multi-subunit complex from Xenopus laevis eggs which contains six putative subunits including the known deacetylase subunits Rpd3 and RbAp48/p46 [8] as well as substoichiometric quantities of the deacetylase-associated protein Sin3 [9-13]. In addition, we identified one of the other components of the complex to be Mi-2, a Snf2 superfamily member previously identified as an autoantigen in the human connective tissue disease dermatomyositis [14,15]. We found that nucleosome-stimulated ATPase activity precisely copurified with both histone deacetylase activity and the deacetylase enzyme complex. This association of a histone deacetylase with a Snf2 superfamily ATPase suggests a functional link between these two disparate classes of chromatin regulators.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center