Send to

Choose Destination
Oncogene. 1998 Jun 11;16(23):3069-82.

BRCA1 as a potential human prostate tumor suppressor: modulation of proliferation, damage responses and expression of cell regulatory proteins.

Author information

Department of Radiation Oncology, Long Island Jewish Medical Center, The Long Island Campus for the Albert Einstein College of Medicine, New Hyde Park, New York 11040, USA.


In addition to breast and ovarian cancer in women, recent evidence suggests that germ-line mutations of the breast cancer susceptibility gene-1 (BRCA1) also confer an increased life-time risk for prostate cancer in male probands. However, it is not known if and how BRCA1 functions in prostate cancer. We stably expressed wild-type (wt) and tumor-associated mutant BRCA1 transgenes in DU-145, a human prostate cancer cell line with low endogenous expression of BRCA1. As compared with parental cells and vector transfected clones, wtBRCA1 clones exhibited: (1) a slightly decreased proliferation rate (doubling time = 25 h as compared with 22 h for control cells); (2) a (3-6)-fold increase in sensitivity to chemotherapy drugs (adriamycin, camptothecin, and taxol); (3) increased susceptibility to drug-induced apoptosis; (4) reduced repair of single-strand DNA strand breaks; and (5) alterations in expression of key cellular regulatory proteins (including BRCA2, p300, Mdm-2, p21(WAF1/CIP1), Bcl-2 and Bax). Clones transfected with the 5677insA breast cancer-associated mutant BRCA1 (insBRCA1) displayed a similar phenotype to wtBRCA1 clones, except that insBRCA1 clones had a significantly decreased proliferation rate (doubling time = 42 h). On the other hand, cells transfected with with 185delAG mutant BRCA1 showed no obvious phenotype as compared with parental or vector transfected cells. These findings suggest that BRCA1 may function as a human prostate tumor suppressor by virtue of its ability to modulate proliferation and various components of the cellular damage response. They also suggest several potential target gene products for a BRCA1 prostate tumor suppressor function.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center