Format

Send to

Choose Destination
See comment in PubMed Commons below
Science. 1998 Jul 10;281(5374):200-7.

Biogeochemical Controls and Feedbacks on Ocean Primary Production

Author information

1
P. G. Falkowski is at the Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901-8521, USA. R. T. Barber is in the Division of Earth and Ocean Sciences, Duke University, Beaufort, NC 28516, USA. V. Smetacek is at the Alfred Wegener Institute for Polar and Marine Research, Bremerhaven D-27570, Germany.

Abstract

Changes in oceanic primary production, linked to changes in the network of global biogeochemical cycles, have profoundly influenced the geochemistry of Earth for over 3 billion years. In the contemporary ocean, photosynthetic carbon fixation by marine phytoplankton leads to formation of approximately 45 gigatons of organic carbon per annum, of which 16 gigatons are exported to the ocean interior. Changes in the magnitude of total and export production can strongly influence atmospheric CO2 levels (and hence climate) on geological time scales, as well as set upper bounds for sustainable fisheries harvest. The two fluxes are critically dependent on geophysical processes that determine mixed-layer depth, nutrient fluxes to and within the ocean, and food-web structure. Because the average turnover time of phytoplankton carbon in the ocean is on the order of a week or less, total and export production are extremely sensitive to external forcing and consequently are seldom in steady state. Elucidating the biogeochemical controls and feedbacks on primary production is essential to understanding how oceanic biota responded to and affected natural climatic variability in the geological past, and will respond to anthropogenically influenced changes in coming decades. One of the most crucial feedbacks results from changes in radiative forcing on the hydrological cycle, which influences the aeolian iron flux and, in turn, affects nitrogen fixation and primary production in the oceans.

PMID:
9660741
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center