Send to

Choose Destination
See comment in PubMed Commons below
Protein Sci. 1998 Jun;7(6):1380-7.

Crystal structure of Saccharomyces cerevisiae cytosolic aspartate aminotransferase.

Author information

  • 1Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA.


The crystal structure of Saccharomyces cerevisiae cytoplasmic aspartate aminotransferase (EC has been determined to 2.05 A resolution in the presence of the cofactor pyridoxal-5'-phosphate and the competitive inhibitor maleate. The structure was solved by the method of molecular replacement. The final value of the crystallographic R-factor after refinement was 23.1% with good geometry of the final model. The yeast cytoplasmic enzyme is a homodimer with two identical active sites containing residues from each subunit. It is found in the "closed" conformation with a bound maleate inhibitor in each active site. It shares the same three-dimensional fold and active site residues as the aspartate aminotransferases from Escherichia coli, chicken cytoplasm, and chicken mitochondria, although it shares less than 50% sequence identity with any of them. The availability of four similar enzyme structures from distant regions of the evolutionary tree provides a measure of tolerated changes that can arise during millions of years of evolution.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center