Format

Send to

Choose Destination
Mol Cell Biochem. 1998 Jun;183(1-2):11-23.

Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor.

Author information

1
First Institute of Pathology and Experimental Cancer Research, Semmelweis Medical University, Budapest, Hungary.

Abstract

Eukaryotic DNA topoisomerase I catalyzes changes in the superhelical state of duplex DNA by transiently breaking single strands thereby allowing relaxation of both positively and negatively supercoiled DNA. Topoisomerase I is a nuclear enzyme localized at active sites of transcription, and abnormal levels of the enzyme have been observed in a variety of neoplasms. Because the enzyme binds heparin and, given the presence of heparan sulfate within the nuclei of mammalian cells, we sought to investigate the interaction between topoisomerase I and sulfated glycosaminoglycans isolated from normal and neoplastic human liver. The results demonstrated that low concentrations (approximately 100 nM) of heparan sulfate from normal liver but not from its malignant counterpart effectively blocked relaxation of supercoiled DNA driven by either purified holoenzyme or topoisomerase I activity present in nuclear extracts of three malignant cell lines. Heparin acted at even lower (approximately 10 nM) concentrations. Moreover, we show that basic fibroblast growth factor could interfere with this heparan sulfate/heparin-driven inhibition and that both basic fibroblast growth factor and heparin-binding sites co-localized in the nuclei of U937 leukemic cells. Our results suggest that DNA topoisomerase I activity may be modulated in vivo by specific heparan sulfate moieties present in normal cells but markedly reduced or absent in their transformed counterparts.

PMID:
9655174
DOI:
10.1023/a:1006898920637
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center