Format

Send to

Choose Destination
J Mol Biol. 1998 Jul 10;280(2):297-314.

A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I.

Author information

1
Institut für Kristallographie, Freie Universität Berlin, Takustr. 6, Berlin, D-14195, Germany.

Abstract

The 4 A structural model of photosystem I (PSI) has elucidated essential features of this protein complex. Inter alia, it demonstrates that the core proteins of PSI, PsaA and PsaB each consist of an N-terminal antenna-binding domain, and a C-terminal reaction center (RC)-domain. A comparison of the RC-domain of PSI and the photosynthetic RC of purple bacteria (PbRC), reveals significantly analogous structures. This provides the structural support for the hypothesis that the two RC-types (I and II) share a common evolutionary origin. Apart from a similar set of constituent cofactors of the electron transfer system, the analogous features include a comparable cofactor arrangement and a corresponding secondary structure motif of the RC-cores. Despite these analogies, significant differences are evident, particularly as regards the distances between and the orientation of individual cofactors, and the length and orientation of alpha-helices. Inferred roles of conserved amino acids are discussed for PSI, photosystem II (PSII), photosystem C (PSC, green sulfur bacteria) and photosystem H (PSH, heliobacteria). Significant sequence homology between the N-terminal, antenna-binding domains of the core proteins of type-I RCs, PsaA, PsaB, PscA and PshA (of PSI, PSC and PSH respectively) with the antenna-binding subunits CP43 and CP47 of PSII indicate that PSII has a modular structure comparable to that of PSI.

PMID:
9654453
DOI:
10.1006/jmbi.1998.1824
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center