Send to

Choose Destination
J Mol Biol. 1998 Jul 3;280(1):41-59.

Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility.

Author information

Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.


The worm-like chain model has often been employed to describe the average conformation of long, intrinsically straight polymer molecules, including DNA. The present study extends the applicability of the worm-like chain model to polymers containing bends or sections of different flexibility. Several cases have been explicitly considered: (i) polymers with a single bend; (ii) polymers with multiple coplanar bends; (iii) polymers with two non-coplanar bends; and (iv) polymers comprised of sections with different persistence lengths. Expressions describing the average conformation of such polymers in terms of the mean-square end-to-end distance have been derived for each case. For cases (i) and (iv), expressions for the projection of the end-to-end vector onto the initial orientation of the chain are presented. The expressions derived here have been used to investigate DNA molecules with sequence-induced bending (A-tracts). Mean-square end-to-end distance values determined from a large number of A-tract containing DNA molecules visualized by scanning force microscopy resulted in an average bend angle of 13.5 degrees per A-tract. A similar study was performed to characterize the flexibility of double-strandedDNA molecules containing a single-stranded region. Analysis of their mean-square end-to-end distance yielded a persistence length of 1.3 nm for single-stranded DNA.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center