Send to

Choose Destination
J Biol Chem. 1998 Jul 10;273(28):17665-70.

A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization.

Author information

Case Western Reserve University, School of Medicine, Department of Genetics, Cleveland, Ohio 44106-4955, USA.


Upon feeding, mosquito midguts secrete the peritrophic matrix (PM), an extracellular chitin-containing envelope that completely surrounds the blood meal. Because the malaria parasite must cross the PM to complete its life cycle in the mosquito, the PM is a potential barrier for malaria transmission. By antibody screening of an expression library we have identified and partially characterized a cDNA encoding a putative PM protein, termed Anopheles gambiae adult peritrophin 1 (Ag-Aper1). Ag-Aper1 is the first cloned PM gene from a disease vector. Northern analysis detected an abundant Ag-Aper1 transcript only in the adult gut, and not in any other tissues or at any other stages of development. The predicted amino acid sequence indicates that it has two tandem chitin-binding domains that share high sequence similarity with each other and also with the chitin-binding domain of an adult gut-specific chitinase from the same organism. The presumed ability of Ag-Aper1 to bind chitin was verified by a functional assay with the baculovirus-expressed recombinant protein. Ag-Aper1 did bind to chitin but not to cellulose, indicating that Ag-Aper1 binds chitin specifically. The double chitin-binding domain organization of Ag-Aper1 suggests that each protein molecule is able to link two chitin polymer chains. Hence, this protein is likely to act as a molecular linker that connects PM chitin fibrils into a three-dimensional network.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center