Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1998 Jul;18(7):4385-90.

Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm-/- mice.

Author information

1
Department of Biology, University of California, San Diego, La Jolla, California 92093-0322, USA. yangxu@ucsd.edu

Abstract

Disruption of the mouse Atm gene, whose human counterpart is consistently mutated in ataxia-telangiectasia (A-T) patients, creates an A-T mouse model exhibiting most of the A-T-related systematic and cellular defects. While ATM plays a major role in signaling the p53 response to DNA strand break damage, Atm-/- p53(-/-) mice develop lymphomas earlier than Atm-/- or p53(-/-) mice, indicating that mutations in these two genes lead to synergy in tumorigenesis. The cell cycle G1/S checkpoint is abolished in Atm-/- p53(-/-) mouse embryonic fibroblasts (MEFs) following gamma-irradiation, suggesting that the partial G1 cell cycle arrest in Atm-/- cells following gamma-irradiation is due to the residual p53 response in these cells. In addition, the Atm-/- p21(-/-) MEFs are more severely defective in their cell cycle G1 arrest following gamma-irradiation than Atm-/- and p21(-/-) MEFs. The Atm-/- MEFs exhibit multiple cellular proliferative defects in culture, and an increased constitutive level of p21 in these cells might account for these cellular proliferation defects. Consistent with this notion, Atm-/- p21(-/-) MEFs proliferate similarly to wild-type MEFs and exhibit no premature senescence. These cellular proliferative defects are also rescued in Atm-/- p53(-/-) MEFs and little p21 can be detected in these cells, indicating that the abnormal p21 protein level in Atm-/- cells is also p53 dependent and leads to the cellular proliferative defects in these cells. However, the p21 mRNA level in Atm-/- MEFs is lower than that in Atm+/+ MEFs, suggesting that the higher level of constitutive p21 protein in Atm-/- MEFs is likely due to increased stability of the p21 protein.

PMID:
9632822
PMCID:
PMC109022
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center