Send to

Choose Destination
Nat Biotechnol. 1996 Jul;14(7):880-3.

Use of microphysiometry for analysis of heterologous ion channels expressed in yeast.

Author information

Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121, USA.


Measurement of extracellular acidification rates by microphysiometry provides a means to analyze the function of ion channels expressed in yeast cells. These measurements depend on the proton pumping action of the H(+)-ATPase, a central component of the yeast plasma membrane. We used microphysiometry to analyze the activity of two ion channels expressed in yeast. In one example, an inwardly rectifying K+ channel, gpIRK1, provides a potassium uptake function when expressed in a potassium transporter-defective yeast strain. Rates of acidification in gpIRK1-expressing cells directly reflect channel function. Addition of cesium, an inhibitor of gpIRK1 activity, results in an immediate reduction in acidification rates. In a second example, expression of a nonselective cation channel, the influenza virus M2 protein, is believed to interfere with the maintenance of the electrochemical proton gradient by the H(+)-ATPase. In cells expressing the M2 channel, addition of inhibitors increases the rate of proton extrusion. Moreover, functional differences between two M2 inhibitors, amantadine and BL-1743, are distinguished by the microphysiometer. This application demonstrates the utility of the microphysiometer for functional studies of ion channels; it is adaptable to a screening process for compounds that modulate ion channel activity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center