Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1998 Jun 19;273(25):15458-63.

pi-Stacking interactions. Alive and well in proteins.

Author information

  • 1Wyeth-Ayerst Research, Structural Biology, Princeton, New Jersey 08540, USA.


A representative set of high resolution x-ray crystal structures of nonhomologous proteins have been examined to determine the preferred positions and orientations of noncovalent interactions between the aromatic side chains of the amino acids phenylalanine, tyrosine, histidine, and tryptophan. To study the primary interactions between aromatic amino acids, care has been taken to examine only isolated pairs (dimers) of amino acids because trimers and higher order clusters of aromatic amino acids behave differently than their dimer counterparts. We find that pairs (dimers) of aromatic side chain amino acids preferentially align their respective aromatic rings in an off-centered parallel orientation. Further, we find that this parallel-displaced structure is 0.5-0.75 kcal/mol more stable than a T-shaped structure for phenylalanine interactions and 1 kcal/mol more stable than a T-shaped structure for the full set of aromatic side chain amino acids. This experimentally determined structure and energy difference is consistent with ab initio and molecular mechanics calculations of benzene dimer, however, the results are not in agreement with previously published analyses of aromatic amino acids in proteins. The preferred orientation is referred to as parallel displaced pi-stacking.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center