Send to

Choose Destination
J Comp Neurol. 1998 Jun 22;396(1):131-40.

Differential distribution of Shaker-like and Shab-like K+-channel subunits in goldfish retina and retinal bipolar cells.

Author information

Department of Neurobiology and Behavior, University at Stony Brook, New York 11794-5230, USA.


The distributions of Shaker subfamily Kv1.1 and Kv1.2 and Shab subfamily Kv2.1 subunits of voltage-gated K+ channels were determined in the retina and ON bipolar cells of goldfish by using double-label light and electron microscopic immunocytochemistry. All labeling to be described was blocked by preabsorption of the primary antibodies with antigen. The retina was labeled throughout with all three antibodies. However, labeling was densest in the inner plexiform layer for Kv1.1, more concentrated in the outer nuclear layer for Kv2.1, and uniform throughout for Kv1.2. All ON mixed rod/cone (mb) and cone (cb) bipolar somata and the proximal portions of their axons and dendrites were labeled for anti-Kv1.1, Kv1.2, and Kv2.1. Labeling of axons rarely extended over the mb axon terminal. Only Kv1.2 antibodies labeled mb bipolar cell dendrites in the outer plexiform layer. No evidence for Kv1.1, 1.2, or 2.1 antibody labeling of OFF bipolar cells was found. Ultrastructurally, Kv1.2-immunoreactivity was associated with the plasma membrane of bipolar cell bodies and with dendrites that make narrow-cleft junctions with cone terminals (ON-type). Kv immunoreactivity was not found associated with presynaptic membranes in the inner plexiform layer and was found only rarely with membranes, postsynaptic to an amacrine cell process. Although both Shaker and Shab subfamilies include delayed rectifiers, their activation properties differ, suggesting differential modulation of K+ conductances in bipolar cells based not only on the presence or absence of rod photoreceptor input but also whether the bipolar cells are of the ON or OFF type.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center