Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 1998 May 27;1403(1):115-25.

Atrial natriuretic peptide modulates alveolar type 2 cell adenylyl and guanylyl cyclases and inhibits surfactant secretion.

Author information

Pulmonary Center and Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.


Alveolar epithelial type 2 (T2) cells isolated from the lungs of adult rats responded to exogenous atrial natriuretic peptide (ANP) by two signalling mechanisms. First, ANP induced a dose-dependent reduction of ligand-stimulated adenylyl cyclase activity and cAMP accumulation. This effect was inhibited by the addition of GDPbetaS or by pretreatment with pertussis toxin (PT), consistent with mediation by a Gi protein(s). PT-catalyzed [32P]ADP-ribosylation, immunoblots with specific antisera, and Northern blot analysis demonstrated that T2 cells contain the G-proteins Gi2 and Gi3 which could transduce this signal. ANP also promoted PT-insensitive, dose-dependent accumulation of cGMP, consistent with activation of a receptor guanylyl cyclase. Isoproterenol-stimulated phosphatidylcholine secretion was markedly attenuated by ANP, and this effect was inhibited by PT pretreatment, consistent with mediation by a Gi protein(s). These data indicate that in addition to the lung being a major clearance organ for circulating ANP, lung parenchymal cells are targets of ANP action.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center