Format

Send to

Choose Destination
See comment in PubMed Commons below
J Clin Invest. 1998 Jun 1;101(11):2370-6.

A fatty acid- dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion.

Author information

1
Department of Internal Medicine, Center for Diabetes Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235, USA.

Abstract

Lowering of the plasma FFA level in intact fasted rats by infusion of nicotinic acid (NA) caused essentially complete ablation of insulin secretion (IS) in response to a subsequent intravenous bolus of arginine, leucine, or glibenclamide (as previously found using glucose as the beta-cell stimulus). However, in all cases, IS became supranormal when a high FFA level was maintained by co-infusion of lard oil plus heparin. Each of these secretagogues elicited little, if any, IS from the isolated, perfused "fasted" pancreas when tested simply on the background of 3 mM glucose, but all became extremely potent when 0.5 mM palmitate was also included in the medium. Similarly, IS from the perfused pancreas, in response to depolarizing concentrations of KCl, was markedly potentiated by palmitate. As was the case with intravenous glucose administration, fed animals produced an equally robust insulin response to glibenclamide regardless of whether their low basal FFA concentration was further reduced by NA. In the fasted state, arginine-induced glucagon secretion appeared to be independent of the prevailing FFA concentration. The findings establish that the essential role of circulating FFA for glucose-stimulated IS after food deprivation also applies in the case of nonglucose secretagogues. In addition, they imply that (i) a fatty acid-derived lipid moiety, which plays a pivotal role in IS, is lost from the pancreatic beta-cell during fasting; (ii) in the fasted state, the elevated level of plasma FFA compensates for this deficit; and (iii) the lipid factor acts at a late step in the insulin secretory pathway that is common to the action of a wide variety of secretagogues.

PMID:
9616208
PMCID:
PMC508826
DOI:
10.1172/JCI1813
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Journal of Clinical Investigation Icon for PubMed Central
    Loading ...
    Support Center